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Abstract 

There are many issues regarding the assimilation of satellite precipitation data into 1 

numerical models, including the non-Gaussian error distributions associated with precipitation, 2 

and large model and observation errors. As a result, it is not easy to improve the model forecast 3 

beyond a few hours by assimilating precipitation. To identify the challenges and propose 4 

practical solutions to assimilation of precipitation, statistics are calculated for global precipitation 5 

in a low-resolution NCEP Global Forecasting System (GFS) model and the TRMM Multisatellite 6 

Precipitation Analysis (TMPA). The samples are constructed using the same model with the 7 

same forecast period, observation variables, and resolution as planned in the follow-on 8 

GFS/TMPA precipitation assimilation experiments presented in the companion paper. 9 

The statistical results indicate that the T62 and T126 GFS models generally have positive 10 

bias in precipitation compared to the TMPA observations, and that the simulation of the marine 11 

stratocumulus precipitation is problematic in the T62 GFS model. It is necessary to apply to 12 

precipitation either the commonly used logarithm transformation or the newly proposed 13 

Gaussian transformation to obtain a better relationship between the model and observational 14 

precipitation. When the Gaussian transformations are separately applied to the model and 15 

observational precipitation, they serve as a bias correction that corrects the amplitude-dependent 16 

biases. In addition, using a spatially and/or temporally averaged precipitation variable, such as 17 

the 6-hour accumulated precipitation, should be advantageous for precipitation assimilation. 18 

 

Key words: data assimilation, precipitation, Gaussian anamorphosis, bias correction.   19 



 
2 

1. Introduction 

In recent years, several global precipitation estimations from a variety of remote sensing 20 

platforms have become available, such as the Tropical Rainfall Measuring Mission (TRMM) 21 

Multisatellite Precipitation Analysis (TMPA; Huffman et al. 2007, 2010) and the Global Satellite 22 

Mapping of Precipitation (GSMaP; Ushio et al. 2009). Meanwhile, many efforts to assimilate 23 

precipitation observations have also been made (e.g., Tsuyuki 1996, 1997; Falkovich et al. 2000; 24 

Davolio and Buzzi 2004; Koizumi et al. 2005; Mesinger et al. 2006). However, serious 25 

difficulties still remain in assimilating the precipitation data. For example, most of data 26 

assimilation schemes, including the variational methods and the ensemble Kalman filter (EnKF) 27 

methods, assume Gaussian error distributions for both observations and model backgrounds. If 28 

the error distribution is not Gaussian, the analysis may not be optimal. Since the precipitation-29 

related variables are far from Gaussian, the non-Gaussianity issue becomes a severe problem for 30 

precipitation assimilation. Besides, both the model errors and observation errors are important 31 

issues for precipitation assimilation. As a consequence, a widely shared experience is that the 32 

precipitation assimilation can be useful in improving the model analyses, but the forecast 33 

improvement is usually limited to the first few forecast hours (e.g., Falkovich et al. 2000; 34 

Davolio and Buzzi 2004; Tsuyuki and Miyoshi 2007). These issues have been discussed and 35 

summarized in several articles, such as Errico et al. (2007), Bauer et al. (2011), and Lien et al. 36 

(2013; LKM2013 hereafter). Notwithstanding these difficulties, several recent studies have 37 

shown some usefulness of precipitation assimilation (Lopez 2011, 2013; Zupanski et al. 2011; 38 

Zhang et al. 2013). 39 

A variable transformation technique is a computationally feasible solution to mitigate the 40 

non-Gaussianity issue in realistic geophysical data assimilation systems (Bocquet et al. 2010; 41 
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Amezcua and van Leeuwen 2014). For precipitation data assimilation, the precipitation values 42 

are usually transformed by a logarithmic function before assimilating them into the model (e.g., 43 

Lopez 2011). Instead of the logarithmic transformation, LKM2013 proposed to apply the 44 

Gaussian anamorphosis method to precipitation based on its model climatology, under the 45 

assumption that a forecast variable with more Gaussian climatological distribution would result 46 

in a more Gaussian error distribution. With this transformation, they succeeded in showing 47 

effective assimilation of global precipitation in their proof-of-concept observing system 48 

simulation experiments (OSSEs), using a simplified general circulation model and the local 49 

ensemble transform Kalman filter (LETKF). In their experiments, precipitation assimilation not 50 

only improves the analyses but also improves the model forecasts over the entire 5-day forecast 51 

period in their experiments. 52 

Although a significant forecast improvement by precipitation assimilation was demonstrated 53 

in LKM2013 with an idealized system, in real systems improvements are generally very limited 54 

or even absent. The distinct challenges associated with the use of realistic model and real 55 

observations include the large and unknown errors related not only to the moist physical 56 

parameterization in the model but also to the observations. Since both the model precipitation 57 

and the observations could have large different types of errors, the long-term statistics of these 58 

two quantities may be very different, which is harmful to the data assimilation use. Therefore, 59 

before performing real precipitation data assimilation, it is worthwhile to first investigate the 60 

statistical characteristics of precipitation in both model and observation datasets which we would 61 

like to use, presented in this paper. 62 

We investigate the differences in probability distributions between the precipitation in a 63 

series of short-term model forecasts and a precipitation observation dataset, to isolate the 64 
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different characteristics of the real model and observations. It is noted that the challenges 65 

introduced by these differences could not be addressed in LKM2013 since they used the 66 

identical-twin OSSE method. Here we use more realistic settings: the National Centers for 67 

Environmental Prediction (NCEP) Global Forecasting System (GFS), run at a low-resolution, 68 

and the TMPA data as the precipitation observations. Given the low resolution feasible in our 69 

study, the main focus of our work is assimilation of the global large-scale precipitation, which 70 

could be particularly important for improving medium-range model forecasts. Since the 71 

probability distributions are dependent on the use (or lack of use) of variable transformations, the 72 

results with different transformation methods will be investigated. We also show the correlation 73 

between model forecasts and observations at each grid point in a map. Several suggestions for 74 

real-data precipitation assimilation are made in the concluding section of this article. Although 75 

we choose to use the NCEP GFS model and the TMPA data to study the precipitation data 76 

assimilation, the same analysis can also be performed with other models and observation datasets. 77 

The paper is organized as follows. The GFS model and TMPA observations are briefly 78 

introduced in Section 2. Section 3 describes the transformation methods we will use in the 79 

precipitation statistics. A series of statistical results are then presented in the following sections: 80 

Section 4 shows the cumulative distribution functions (CDFs) of the precipitation data, which 81 

will be used to define the Gaussian transformation of precipitation; Section 5 shows the joint 82 

probability distribution diagrams between the model precipitation and precipitation observations 83 

and compares the results in terms of the transformation methods, the temporal integration of 84 

precipitation, and the resolution of precipitation data. Section 6 presents the geographic 85 

distribution of correlation scores between these two variables. Concluding remarks and 86 

suggestions for the precipitation assimilation are given in Section 7. In addition, the successful 87 
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assimilation of the TMPA data following the guidance derived from this study will be presented 88 

in a separate paper (Lien et al. 2015b; LMK2015b hereafter). 89 

2. The model and observations 

The GFS model is the operational global NWP model used at the NCEP. It is one of the 90 

major world state-of-the-art operational NWP models and provides main model guidance for 91 

weather forecasting in the United States. The GFS model can be run at various spectral 92 

resolutions on a hybrid sigma/pressure coordinate. In this study we focus on the large-scale 93 

global precipitation and also consider the computational constraints, so the experiments and 94 

analyses are done with two lower-resolution configurations: T62 and T126 (roughly equivalent 95 

to 200 km and 100 km horizontal resolutions) with 64 vertical levels (L64). The convection and 96 

precipitation are parameterized using a modified simplified-Arakawa-Schubert (SAS) scheme 97 

(Pan and Wu 1995; Han and Pan 2011), considering both deep and shallow convection. 98 

The TRMM Multi-satellite Precipitation Analysis (Huffman et al. 2007, 2010) is a gridded 99 

precipitation dataset compiled from multiple satellite sensors. It has a global coverage from 50°S 100 

to 50°N with 0.25° spatial resolution and 3-hour temporal resolution. The variable provided by 101 

the TMPA is the estimated surface precipitation rate. The primary data sources are the low-earth-102 

orbit (LEO) satellites such as the Microwave Imager (TMI) on TRMM, the Special Sensor 103 

Microwave Imager (SSMI) and Special Sensor Microwave Imager/Sounder (SSMIS) on the 104 

Defense Meteorological Satellite Program (DMSP) satellites, the Advanced Micro-wave 105 

Scanning Radiometer-Earth Observing System (AMSR-E) on Aqua, the Advanced Microwave 106 

Sounding Unit-B (AMSU-B) on the National Oceanic and Atmospheric Administration (NOAA) 107 

satellite series, and the Microwave Humidity Sounder (MHS) on both the NOAA and the 108 

EUMETSAT MetOp series. The microwave satellite observations have a strong physical 109 
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relationship to the hydrometeors and thus the surface precipitation, but they are spatially and 110 

temporally inhomogeneous. To fill the gaps left from the LEO sensors, the infrared (IR) data 111 

collected by the geosynchronous-earth-orbit (GEO) satellites are used as the secondary data 112 

sources with calibration by the microwave precipitation estimates, though the accuracy of 113 

precipitation derived from the IR is lower. For the research version (i.e., not in real time) of the 114 

TMPA, these satellite-derived precipitation amounts are further rescaled based on several 115 

monthly rain gauge analyses to achieve accurate statistics in the climatological scale, while in the 116 

real-time version the satellite-derived precipitation is rescaled with a climatological correction to 117 

the research version. With the above data processing procedure, the TMPA has very high (> 118 

95%) data coverage rate (Figure 1a), thus becoming a potential good observational source for the 119 

assimilation of global precipitation. In this study, we use the version 7 of the TMPA research 120 

products, labeled as 3B42, released in 2012 (Huffman et al. 2012). The climatological mean 121 

daily precipitation computed from the 14-year TMPA data (1998–2011) is shown in Figure 1b. 122 

To make the 0.25°-resolution TMPA data correspond to the lower resolutions of the 123 

T62/T126 GFS model, we pre-process the precipitation rate data, upscaling the original TMPA 124 

grids to the T62 or T126 Gaussian grids used by the GFS model using an area-conserving 125 

remapping. 126 

3. Transformation of Precipitation 

In this section, several transformations for precipitation assimilation are described, including 127 

the widely used logarithm transformation, and the transformation based on Gaussian 128 

anamorphosis used in previous studies such as Simon and Bertino (2009), Schöniger et al. (2012), 129 

and LKM2013. The transformations have a profound impact on the statistical results shown in 130 

later sections. 131 
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a. Logarithm transformation 

The logarithm transformation 132 

  𝑦 = ln 𝑦 + 𝛼  (1) 

is a simple and frequently used way to transform precipitation. Here, 𝑦 is the original variable, 𝑦 133 

is the transformed variable, and 𝛼 is a tunable constant added to prevent the singularity at zero 134 

precipitation (𝑦 = 0). Using the logarithm transformation, Lopez (2011) successfully assimilated 135 

the NCEP stage IV precipitation analysis over the eastern United States, and Lopez (2013) 136 

presented experimental results of assimilation of the 6-hourly accumulated precipitation 137 

observations measured by the rain gauges at synoptic stations. 138 

b. Gaussian transformation 

The logarithm transformation may be helpful for precipitation assimilation in some regions, 139 

seasons, or precipitation types, but a globally invariant analytical transformation may not be 140 

applicable to every case. Therefore, following LKM2013, we will also examine the effect of the 141 

Gaussian transformation on the precipitation statistics. Here we briefly summarize the 142 

formulation of the Gaussian transformation in LKM2013 and explain the changes made in this 143 

study after LKM2013. 144 

1) General formula 

The transformations is made by equating the two CDFs of the original variable (𝑦) and the 145 

transformed variable (𝑦): 146 

  𝐹 𝑦 = 𝐹 𝑦  , or (2) 

  𝑦 = 𝐹!! 𝐹 𝑦  , (3) 



 
8 

where 𝐹 is the CDF of 𝑦, 𝐹 is the CDF of 𝑦, and 𝐹!! is the inverse function of 𝐹. By definition, 147 

the CDFs are bounded within 0, 1 . The CDF of the original variable (𝐹) is empirically 148 

determined from samples, and the CDF of the transformed variable (𝐹) can be arbitrarily chosen 149 

so that the transformed variable can have any desired distribution. If we choose 150 

  𝐹 𝑦 = 𝐹! 𝑦 =
1
2 1+ erf

𝑦
2

 , (4) 

which is the CDF of a standard normal distribution with zero mean and unit variance, and erf is 151 

the error function, then 152 

  𝐹!!! 𝑃 = 2 erf!! 2𝑃 − 1  (5) 

where 𝑃  is the cumulative probability, so that it becomes a “Gaussian anamorphosis” 153 

(Wackernagel 2003): 154 

  𝑦 = 𝐹!!! 𝐹 𝑦  . (6) 

In this way, the transformed variable (𝑦) becomes a Gaussian variable. The use of the Gaussian 155 

anamorphosis has appeared in several geophysical data assimilation studies (e.g., Simon and 156 

Bertino 2009, 2012; Schöniger et al. 2012). We call this method “Gaussian transformation” 157 

hereafter. 158 

Figure 2 provides an illustration the Gaussian transformation procedure. It displays the 10-159 

year climatological probability density function (PDF) and CDF of the original and transformed 160 

precipitation in both the GFS model forecasts and the TMPA dataset, at three selected locations 161 

for the 11–20 January period. The collection of the model and observational precipitation 162 

samples will be discussed in later sections, but here we use the plots to visualize the method. The 163 

transformation starts from Figure 2a (e, i), which are the very non-Gaussian PDFs of the original 164 
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variables. The red color stands for the model precipitation and the green color stands for the 165 

observational precipitation. Their CDFs are then calculated [Figure 2c (g, k)]. Using the inverse 166 

CDF of the standard normal distribution 𝐹!!!, the cumulative probability values are converted 167 

into the transformed variables 𝑦, whose CDFs shown in Figure 2d (h, l) and PDFs in Figure 2b 168 

(f, j). It is important to note that the precipitation distribution contains a great portion of zero 169 

values, shown as a delta function in the PDFs and a discontinuity in the CDFs, which need to be 170 

treated in a special manner. Following LKM2013, all the zero values are represented by half of 171 

the zero precipitation cumulative probability (i.e., the median; solid circles in Figure 2) during 172 

the transformation: 173 

  𝐹 0 =
1
2𝑃c . 

(7) 

where 𝑃c  is the zero precipitation probability in the climatology. In this way, the zero 174 

precipitation is still a delta function in the transformed variable, but it is located at a certain 175 

distance away from the trace precipitation values. 176 

This method transforms the climatological distribution of the model forecast variable into a 177 

Gaussian distribution, but this does not necessarily make the background error distributions 178 

Gaussian, as required in the EnKF data assimilation (e.g., Ott et al. 2004). However, it is 179 

reasonable to assume that a forecast variable with more Gaussian climatological distribution 180 

would result in more Gaussian error distribution (LKM2013). It is difficult to validate this 181 

assumption using the climatological data in this study but we do provide a validation of this 182 

assumption in the follow-on paper (LMK2015b) using the actual experimental data from the 183 

cycling LETKF data assimilation. 184 
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It is worth mentioning that this CDF-based transformation of precipitation has also been 185 

used in some climate studies, though they are not related to data assimilation. For example, the 186 

Standardized Precipitation Index (SPI) (McKee et al. 1993; Guttman 1999) commonly used to 187 

study drought is defined based on a similar method, but the time scales of precipitation 188 

accumulations they have focused on are much longer than the 6 hours used in weather data 189 

assimilation. 190 

2) Computation of the CDFs and transformations 

Some technical details are described in this subsection. First, we regard all precipitation 191 

values smaller than 0.06 mm (6h)-1 as “zero precipitation” because small values in the model or 192 

observational precipitation data would be not meaningful. This value is close to the threshold 193 

used in LKM2013, 0.1 mm (6h)-1. 194 

Second, extreme values with cumulative distribution less than 0.001 and greater than 0.999 195 

are set to 0.001 and 0.999, respectively. Consequently, when the original values fall outside the 196 

range in the climatological samples, they will be transformed to -3.09 and 3.09. It is noted for 197 

reference that Simon and Bertino (2012) also discussed this problem and they used parametric 198 

linear tails to form their transformation. 199 

Third, we derive the CDFs from precipitation samples using constant-width bins with 200 

respect to the cumulative probability in [0, 1], not with respect to the precipitation amount as it 201 

might be intuitively done. Two hundred bins are used. The CDFs are thus represented by the 201 202 

(including 0 and 1) discretized precipitation amounts at each cumulative distribution levels at a 203 

0.005 increment. When we need to compute 𝐹 𝑦  for a given precipitation value 𝑦, we perform a 204 

linear interpolation from the two nearby data points. Compared to binning with respect to the 205 
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precipitation amount, this method can more precisely represent the CDF curves using the same 206 

number of the bins, particularly for large precipitation values.  207 

3) Separate Gaussian transformation applied to model background and observations 

Following the methods described above, we can apply the Gaussian transformation to the 208 

GFS model and the TMPA data. However, there is an important difference between the Gaussian 209 

transformation used in LKM2013 and in this study. In LKM2013, the transformation was 210 

defined purely based on the 10-year model precipitation climatology, and so the same 211 

transformation was used for both the model precipitation and the observed precipitation. There 212 

was no need to consider the transformations of the model precipitation and the observed 213 

precipitation separately because the work used an identical-twin configuration so that the two 214 

CDFs are identical. In contrast, in this study with a realistic model and real observations, the 215 

transformations need to be defined separately for model precipitation and observations (see red 216 

and green colors in Figure 2). Specifically, the transformation of the model precipitation is 217 

performed based on the CDF computed from the model climatology; and the transformation of 218 

the precipitation observations is performed based on the CDF computed from the observation 219 

climatology. In this way, the model climatology and the observation climatology are first 220 

converted to the same 0–1 scale of their cumulative distribution using the corresponding 221 

transformation (Figure 2d), then the same 𝐹!!! is applied to obtain the Gaussian variables 222 

(Figure 2b). Therefore, this method can essentially remove the climatological bias between these 223 

two variables that is dependent on the precipitation values, referred to as the “amplitude-224 

dependent bias”. The effect of the separate transformations can be large because the precipitation 225 

distribution of the model and observational precipitation can be very different at some regions 226 

(e.g., Figure 2i–l), which will be discussed in later sections. 227 
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4. Cumulative distribution functions of the climatological precipitation data 

We first construct the empirical CDFs for both the GFS model background precipitation and 228 

the TMPA observations, based on their climatological samples. These model and observational 229 

CDFs will be compared, and they will also be used in defining the Gaussian precipitation 230 

transformation. For a relevant comparison useful for guiding the assimilation of precipitation, we 231 

examine the quantities that are used in the data assimilation, which depend on the design of any 232 

specific data assimilation system. We now describe how we collect the 10-year samples of the 233 

model background precipitation and observations in correspondence with our proposed 4D-234 

LETKF experiments. 235 

Figure 3 shows a schematic of the sample preparation. First, for the model precipitation, we 236 

would like to have the “background values” which are usually the short-term (e.g., 6 hours) 237 

forecasts from the analyses. In our system of 4D-LETKF, forecast variables within the period 238 

from 3 to 9 hours will be used as the model background (Hunt et al. 2004; Miyoshi and Yamane 239 

2007). Therefore, we conduct a series of 9-hour GFS model forecasts at desired resolutions (T62 240 

and T126 in this study) every 6 hours initialized from 10-year (2001–2010) CFSR reanalysis 241 

data, then the 3 to 9 hour forecasts are collected to form a series of model backgrounds. The GFS 242 

model outputs forecast fields every hour in the form of the instantaneous precipitation rate, thus 243 

we can either pick up the precipitation rates every 3 hours corresponding to the TMPA 244 

observations or compute the 6-hour accumulated precipitation centered at time 𝑡 by 245 

  P(6h)! =
1
2Pr!!! + Pr!!

!!!

!!!!!!

+
1
2Pr!!! , (8) 

where Pr! is the precipitation rate (mm h-1) at time 𝑡. Note that although we could directly use 246 

reanalysis precipitation as the model precipitation samples without performing the short-term 247 



 
13 

forecasts, doing in the manner of this study should be preferable because the existing reanalysis 248 

dataset may be produced in a way that is different from our proposed data assimilation system 249 

(e.g., different configurations of the forecast model), and the specific variable used in the data 250 

assimilation, such as the accumulated precipitation within the 3–9 hour forecast may be not 251 

provided in the reanalysis dataset. 252 

For the observations, the same 10-year (2001–2010) data should be collected to form a 253 

series of equivalent observational data. The original TMPA data are provided with the 3-hourly 254 

precipitation rate at a 0.25° longitude-latitude resolution. After upscaling the TMPA data to the 255 

Gaussian grids used by the T62/T126 GFS model, either the instantaneous precipitation rate as in 256 

its original form, or the 6-hour accumulated precipitation amount can be used to compute the 257 

statistics. The 6-hour accumulated precipitation centered at time 𝑡 is computed by a weighted 258 

average 259 

  P(6h)! =
3
2Pr!!! + 3 Pr! +

3
2Pr!!! . (9) 

 260 

After collecting large samples of model background and observational precipitation values, 261 

their CDFs are computed using the method described in Section 3.b, for each T62 grid point and 262 

each 10-day period of year (3 periods per month; 36 periods in total); i.e., 263 

  𝐹 = 𝐹 𝑦; location, period of year  , (10) 

where 𝑦 can be either model or observed 6-hour accumulated precipitation in their original value, 264 

and 𝐹 is the CDF, as previously defined in Equations (2) and (3). The real data contain large 265 

spatial and temporal variabilities. Therefore, to create a more “continuous” CDF field smoothly 266 

varying in space and time, we include all data within 500-km radius and ±2 periods (±20 days) 267 
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when computing the CDF at each grid point and each period. This choice also increases the 268 

sample sizes and thus reduces the sampling errors. The grid numbers within the 500-km radius 269 

are about 20 for the T62 resolution and 80 for the T126 resolution (changing with the 270 

geographical location), so the total grid numbers used to construct the CDF for each point are 271 

roughly 10 year ×365 (day/year)×4 (cycle/day) × 5 period 36 period × 20, 80 ≅272 

4×10!, 1.6×10!  for the {T62, T126} resolution, respectively. 273 

We already presented in Figure 2 the examples of CDFs at 3 different types of regions in the 274 

extratropics (Maryland), in the tropics, and in the marine stratocumulus region for demonstrating 275 

how to construct the Gaussian transformation. The marine stratocumulus region shows a large 276 

discrepancy between the CDFs of the model and observational precipitation. To visualize the 277 

entire CDF field as a function of the geographic location, we plot the maps of precipitation 278 

amounts at various cumulative distribution levels also for the period of 11–20 January for both 279 

the TMPA data and the T62 GFS model backgrounds (Figure 4). By comparing the fields at the 280 

same cumulative distribution levels, it is clearly found that the model has a positive bias 281 

compared to the observations since the amounts in Figure 4b, d, f are generally greater than those 282 

in Figure 4a, c, e. Positive biases are generally seen in the other seasons (not shown). In terms of 283 

geographical patterns, the CDF fields of the model and observations agree reasonably well in 284 

most regions. However, in some particular regions, they actually have a large disagreement. For 285 

example, the GFS forecast shows a local maximum in the precipitation amount at both 30% and 286 

60% cumulative distribution levels (Figure 4b, d) in the Pacific Ocean west to the Southern 287 

America (at about 20°S), but this local maximum does not appear in the TMPA data (Figure 4a, 288 

c, e). This is the region corresponding to the marine stratocumulus precipitation. 289 
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This discrepancy in these regions is most apparent in maps showing the probability of zero 290 

precipitation. As shown in Figure 5, the most significant differences in the zero precipitation 291 

probability between the model and observations are found over the regions where the marine 292 

stratocumulus are formed over cold waters, including the subtropical eastern Pacific in both 293 

northern and southern hemispheres (west of North and South America), and west of Australia 294 

and Africa. In the TMPA data, it rarely rains in these regions (typically with 90% probability of 295 

zero precipitation or 10% probability of nonzero precipitation; green open circle in Figure 2k, l), 296 

but the model drizzle is too frequent, with typically 80% probability of nonzero precipitation (red 297 

open circle in Figure 2k, l). Several studies of the marine stratocumulus (vanZanten et al. 2005; 298 

Leon et al. 2008) indicate that the real nonzero precipitation probability is not as high as the 299 

model climatology here, favoring the TMPA data. The precipitation parameterization in the low 300 

resolution T62 GFS model may be unable to correctly simulate the low level of marine 301 

stratocumulus precipitation. However, Huffman (2007) documented that the TMPA also has a 302 

low precipitation bias over ocean due to lack of sensitivity of microwave imager to light 303 

precipitation, so these large differences could come from both high bias in the model and low 304 

bias in the TMPA data. Since in this paper we do not attempt to improve either the model or the 305 

observations, a reasonable strategy is to not to assimilate the precipitation data in regions where 306 

the disagreement between the model background and the observations is large. 307 

5. Joint probability distributions 

In this section we use the joint probability distribution diagrams to more clearly show the 308 

relationship between the model background precipitation and the precipitation observations. All 309 

data points in the 10-year samples are included in the statistics. Results with different 310 
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transformation methods, different variables (i.e., precipitation rate vs. accumulated 311 

precipitation), and different resolutions will be shown and discussed. 312 

a. Original data vs. logarithm transformed precipitation 

Figure 6 shows the joint probability distribution diagrams between the 6-hour accumulated 313 

precipitation in the T62 GFS model background and in the TMPA data upscaled to the same T62 314 

grids. Different transformation methods are used in each subplot. Only nonzero precipitation is 315 

shown in the figures because when the zero precipitation is also plotted, it just adds two saturated 316 

lines along the x-axis y,𝑦zero  and y-axis 𝑦zero, y  representing the abundance of zero 317 

precipitation in either the model background or the observation data (not shown). One would 318 

expect that the maximum probability regions should be located along the one-to-one diagonal 319 

line for a variable that is useful for data assimilation. However, when the joint probability 320 

distribution diagram is plotted without a transformation method (Figure 6a), we barely see any 321 

correlation in precipitation between the model background and the observations1. The probability 322 

of small precipitation amounts is saturated and not oriented along the one-to-one line. This partly 323 

explains why the original precipitation is not a good variable for data assimilation and an 324 

appropriate transformation of precipitation is needed. 325 

When we calculate the joint probability using logarithm transformed precipitation [without 326 

adding a constant in the logarithmic function; α = 0 in Equation (1)] (Figure 6b), the curved line 327 

of the maximum probability (indicated with a red dashed curve) is clearly seen. This maximum 328 

probability curve is to the right of the one-to-one line, indicating an amplitude-dependent 329 

positive bias of the model precipitation when compared to the TMPA data. In this data 330 

                                                
 
1 In this case, the 𝑅! value computed from linear regression shown in the figure may not be particularly meaningful, 
since the correlation largely comes from the off-diagonal regions. 
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assimilation study, we do not argue whether the model precipitation or the TMPA data is more 331 

correct, but it is clearly better to remove this bias before data assimilation. For example, bias 332 

correction schemes have been widely used in the modern satellite radiance data assimilation (e.g., 333 

Derber and Wu 1998; Dee 2005). 334 

In addition, an interesting fact is found when the “modified” logarithm is used [i.e., a 335 

constant α = 0.6 mm (6h)-1 is added in the transformation; Equation (1)]. In Figure 6c, saturation 336 

in the small precipitation amounts, as in Figure 6a, is seen again. The maximum probability 337 

curve near the one-to-one line is still retained but it is less obvious than in Figure 6b. Therefore, 338 

from this joint probability distribution diagram, it is inferred that the use of a too large constant α 339 

in the logarithm transformation may not be a good solution, since it makes the behavior of the 340 

transformed variable in the small precipitation amounts similar to the original variable, and thus 341 

reduces the discrimination for small amounts. A careful choice of the α value is thus essential. 342 

b. Precipitation rate vs. accumulated precipitation 

Figure 7a shows the same diagrams but for the instantaneous precipitation rate (α = 0 in the 343 

logarithm transformation). Comparing with Figure 6b, it is clear that the correlation with the 344 

precipitation rate is worse than that with the accumulated precipitation amount. In particular, a 345 

multimodal feature is seen in the model precipitation. The precipitation rate produced from the 346 

T62 GFS model tends to be concentrated at several ranges (roughly [-3, -2], [-1.5, -1], and [0, 1] 347 

in the logarithm-transformed value), which could be related to some deficiencies of the 348 

precipitation parameterization at this low resolution. The lower correlation may also be a result 349 

of the timing error of the precipitation parameterization scheme. The instantaneous precipitation 350 

rate is too sensitive to the timing error, which is common for the precipitation produced from 351 

cumulus parameterizations. For example, Chao (2013) showed that cumulus precipitation 352 
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schemes can have large systematic errors in the precipitation diurnal cycle over the land. 353 

Therefore, although the accumulation of precipitation discards the information of the time 354 

variations of the precipitation within the 6-hour assimilation window, the 6-hour accumulated 355 

value of precipitation would be still a better variable than the precipitation rate when used in data 356 

assimilation. The successful assimilation of precipitation demonstrated by Lopez (2011, 2013) 357 

also used the 6-hour accumulated precipitation. Nevertheless, we note that the model resolution 358 

we use is fairly coarse, and the precipitation parameterization could perform better in a higher 359 

resolution model. 360 

c. Resolution (T62 vs. T126) 

The same diagram of Figure 6b but based on the higher resolution results (6-hour 361 

accumulated precipitation) is shown in Figure 7b. We carry out all the same processes used in 362 

Figure 3 at the T126 resolution. At this resolution, the bias between the model and observational 363 

precipitation is clearly smaller than that at the T62 resolution as seen in the joint probability 364 

distribution diagrams (i.e., the deviation of the maximum probability line from the one-to-one 365 

line in Figure 7b is smaller than that in Figure 6b); however, the correlation between the model 366 

and observations also becomes slightly lower than that at T62 (i.e., 0.1625 vs. 0.1822 in 𝑅!). 367 

This is probably due to the larger random error in the higher resolution model and observation 368 

data. By spatially averaging the field, this random error can be reduced (Huffman et al. 2010), 369 

which may be easier for the precipitation assimilation. 370 

However, there is certainly loss of information caused by upscaling the observation data to 371 

lower resolution, and also a reduction in the accuracy of numerical models by using the low 372 

resolution configuration. Therefore, the choice of the resolution may depend on the specific 373 

purpose of the work. In this study, we propose that, for the purpose of improving large-scale 374 
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medium range forecasts, using the spatially averaged (i.e., upscaled) TMPA data would be a 375 

reasonable choice. Indeed, we show in the companion paper (LMK2015b) that the assimilation 376 

of the global large-scale (lower-resolution) precipitation field at the T62 resolution is able to 377 

improve the 5-day model forecasts. We do not argue that the higher-resolution model or 378 

observations are useless in precipitation assimilation, but that there is a “trade-off” between the 379 

resolution and errors. Since it has been shown that model resolution leads to a large impact on 380 

the precipitation forecasts (e.g., Wen et al. 2012), assimilating higher resolution precipitation 381 

data and solving the issues regarding the random errors would be important research. Using a 382 

higher resolution model that has better representation of precipitation processes but still 383 

employing the spatial average in the observation operator could also be considered. 384 

d. Gaussian transformed precipitation 

Using the CDFs constructed in Section 4, we can define the Gaussian transformations of the 385 

GFS model precipitation and the TMPA data following Section 3.b. Note again that the CDFs 386 

are computed for each T62 grid point and each 10-day period of year, and smoothed by including 387 

the nearby grids and times. Although this smoothing helps to construct a smooth CDF field and 388 

thus a more continuous definition of the Gaussian transformation, the disadvantage of this 389 

method is that the transformation would not be good in regions with intrinsically large gradient 390 

of precipitation climatology, such as regions with complex terrain and orographic precipitation. 391 

With the Gaussian transformation, the joint probability distribution diagrams are shown in 392 

Figure 8. Figure 8a and d are the global results. Figure 8a uses the logarithm transformation 393 

already shown before (Figure 6b), and Figure 8d is the same figure plotted with the Gaussian 394 

transformed variables. The figure shows that with the Gaussian transformation, the distribution 395 

of the precipitation variables become more normal, the maximum probability curve becomes 396 
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more collocated with the one-to-one line (i.e., the biases are reduced), and the correlation square 397 

(𝑅!) value increases slightly. In our transformation method defined for model and observations 398 

separately, the model climatology and the observation climatology are first converted to the same 399 

0–1 scale (cumulative distribution), and then the same 𝐹!!! is applied to obtain the Gaussian 400 

variables. Therefore, this method can effectively reduce the amplitude-dependent bias as seen in 401 

Figure 8a. We call this method a “CDF-based bias correction.” 402 

The same diagrams are then plotted with land data only (Figure 8b, e), ocean data only 403 

(Figure 8c, f), the northern hemisphere extratropics (20–50°N; Figure 9a, d), the tropical regions 404 

(20°N–20°S; Figure 9b, e), and the southern hemisphere extratropics (20–50°S; Figure 9c, f). 405 

Note that the TMPA only covers from 50°S to 50°N so the statistics are done within this extent. 406 

Overall, the improvements in the normality, centeredness, and correlations that we found in the 407 

global results are also found over the separate validation regions [except that the correlation 408 

slightly decreases over the ocean with the transformation (Figure 8c, f) but the change is small]. 409 

The amplitude-dependent biases are largely reduced in all regions. Using the logarithm 410 

transformation, the climatological distributions are skewed toward large precipitation amounts in 411 

the land and tropical regions where the convective precipitation is more prevalent, and toward 412 

small precipitation amounts in other regions. The skewness is less obvious in all regions when 413 

the Gaussian transformation is applied. As to the correlation, the increase of the correlation is 414 

particularly notable in the land region and in the northern hemisphere extratropics. In summary, 415 

we find that using separate Gaussian transformations applied to model background precipitation 416 

and observations, defined in terms of each grid point and each period of year, the climatological 417 

distributions of both these two variables are made more Gaussian, and their biases are 418 

significantly reduced. 419 
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6. Time correlation maps 

Using the same 10-year samples of data, and the same Gaussian transformation, we also 420 

calculate the time correlations between the 6-hour accumulated model and observational 421 

precipitation at each grid point and each 10-day period of year so that their geographical 422 

distributions can be displayed. Similar to the CDF calculation, when computing the correlation at 423 

each grid point, the data within ±2 periods (±20 days) are considered together to obtain the 424 

temporally smoothed field. Thus this correlation score is a simple measure of the statistical 425 

“consistency” between the model and the observation climatologies. Figure 10 shows the global 426 

correlation maps in 4 different periods in January, April, July, and October. Overall, the dry area 427 

shows smaller correlations, which is expected because it may not easy to capture the small or 428 

infrequent precipitation amounts by the moist physical parameterization in the model. Besides, 429 

the correlation over ocean is generally much higher than that over land, except for the marine 430 

stratocumulus region, where the correlations are very low as shown from the discrepancy of the 431 

CDF statistics in Section 4. Over land, the desert areas (such as the Sahara) show persistent low 432 

correlations over the year probably because of the infrequent precipitation events and small 433 

precipitation values. The mountainous areas such as the Tibetan Plateau also show low 434 

correlations, which could be partly due to the problem of orographic precipitation in the satellite 435 

based estimates (Shige et al. 2012). Over the United States, the eastern area has higher 436 

correlation than the western area. 437 

According to these time correlation maps, we think that the precipitation data distributed 438 

over the regions with reasonable correlations can be useful in the data assimilation to improve 439 

the model analyses and forecasts, but we hypothesize that the data over the too-small-correlation 440 

regions could be difficult to be used, possibly mainly because of the incapable precipitation 441 
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parameterization in the model. Therefore, it is motivated that we can set up some thresholds of 442 

the correlation values to reject the observations located over the small-correlation regions in the 443 

data assimilation process. We actually employed this idea in the real precipitation assimilation 444 

experiments (LMK2015b) and obtained a slight improvement than not using this criterion. 445 

7. Concluding remarks and suggestions to precipitation assimilation 

This article is the first part of our GFS/TMPA precipitation data assimilation study. In this 446 

part, we calculated statistics with the precipitation variable in the model background and 447 

observations from the point of view of data assimilation. To achieve meaningful statistics, the 448 

samples are carefully constructed using the same model with the same forecast period, 449 

observation variables, and resolution, as we planned to use in the real precipitation assimilation 450 

experiments (LMK2015b). These statistical results can indicate how to extract more useful 451 

information from the precipitation observations. 452 

First of all, the errors of precipitation in numerical models can contribute to a substantial 453 

amount of the difficulties observed in the precipitation assimilation. For example, our statistical 454 

results indicate that the GFS model at both T62 and T126 resolution, generally has positive bias 455 

in precipitation as compared to the TMPA observations, and that it has a severe problem in 456 

parameterizing the marine stratocumulus precipitation. The “precipitation scale” is a key point of 457 

the problem. First, the method for creating precipitation in numerical models depends 458 

intrinsically on the different grid resolutions. When the grid resolution is low, the precipitation is 459 

mainly parameterized by cumulus convection schemes, but the behavior of the model 460 

precipitation varies with model resolution. For example, in the GFS model, precipitation at the 461 

T126 resolution is less biased than that at the T62 resolution, but the correlation to the 462 

observations is also slightly lower, presumably due to the increasing difficulty in collocating 463 
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forecasted and observed precipitation that comes with model resolution. When the grid 464 

resolution is sufficient to resolve convection, the microphysics parameterization schemes can 465 

take over the cumulus parameterization, and the behavior of the model precipitation may be very 466 

different (something not examined in this study). In addition, precipitation usually appears in 467 

random patches, especially for convective precipitation, leading to large random errors at high 468 

resolutions. The timing of the convective precipitation is also difficult to simulate by models. In 469 

addition, the high spatial and temporal variability further lead to large representativeness errors, 470 

which are also dependent upon resolution and important to data assimilation. 471 

Performing spatial and/or temporal averages can effectively reduce these errors. Huffman et 472 

al. (2010) recommended TMPA users to create time/space averages that are appropriate to their 473 

application from the original fine-scale data. Bauer et al. (2011) also mentioned that using  474 

spatially/temporally smoothed precipitation data in assimilation can be beneficial. Based on 475 

similar arguments, accumulated precipitation (equivalent to a time average) is expected to be a 476 

better variable to be used in the data assimilation, rather than the instantaneous precipitation rate. 477 

However, this strategy may seem to contradict the continued pursuit of higher resolution, 478 

especially if we are able to afford high-resolution models and take high-resolution observations. 479 

We consider that this is a trade-off between resolution and errors. If the main goal is to improve 480 

the medium-range model forecasts, using a smoothed lower resolution precipitation to improve 481 

the large-scale analysis can be a reasonable choice. We note that the strategy needed for effective 482 

assimilation of convective scale precipitation such as meteorological radar observations could be 483 

quite different from the current context (e.g., Yussouf et al. 2013). 484 

The ultimate solution to overcome the above issues would be attained by the improvement 485 

of the model precipitation parameterization and the satellite precipitation estimates. Strenuous 486 
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efforts have been made by the modeling (e.g., Han and Pan 2011) and remote sensing retrieval 487 

communities (e.g., Tapiador et al. 2012). However, within the scope of our data assimilation 488 

study, we do not attempt to improve the model or the observations. Our main goal is to optimally 489 

use this imperfect observation dataset in this imperfect model, to improve the model forecasts of 490 

both precipitation and non-precipitation variables, such as wind, temperature, and pressure, by 491 

using appropriate error covariances in the data assimilation. To achieve this goal, we suggest 492 

applying separate Gaussian transformations to model background and observational 493 

precipitation, which can improve the Gaussianity of the variables while also effectively 494 

removing the amplitude-dependent biases between these two variables. This idea is an extension 495 

of the Gaussian precipitation transformation proposed for a perfect model by LKM2013 in which 496 

the same transformation was applied to both model precipitation and observations. 497 

However, since the transformation method is just an approximate way to mitigate the non-498 

Gaussianity issue in the data assimilation, and both the transformation and the bias correction are 499 

constructed based only on the climatologies, there should be some limits of these transformation 500 

and correction approaches. Therefore, precipitation observations that are deemed to be too bad to 501 

be used may need to be rejected. Note that the statement “an observation is bad for assimilation” 502 

is not necessarily because the observation itself is bad, but because the model is not capable of 503 

making use of this observation in that location and time. The samples of the long-term model and 504 

observational precipitation data we prepared in this study could be a useful reference to define 505 

appropriate quality control criteria to assimilate only the “useful” precipitation observations. 506 

Based on the discussion above, we suggest that the problems associated with the 507 

assimilation of large-scale satellite precipitation data with the goal to improve the medium range 508 

model forecasts should be addressed as follows: 509 
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� Non-Gaussianity of the precipitation variable: Apply the Gaussian transformation to 510 

both model and observational precipitation. In LKM2013, this was shown to be 511 

essential for effective assimilation of precipitation using the LETKF in the idealized 512 

experiments. LKM2013 also suggested performing the assimilation only when there are 513 

enough background members with nonzero precipitation. 514 

� Inconsistent probability distributions of precipitation in model climatology and 515 

observation climatology: Define the Gaussian transformations for the model 516 

precipitation and the observational precipitation separately based on their own CDFs so 517 

that the amplitude-dependent bias is reduced. We call this method a “CDF-based bias 518 

correction.” 519 

� Timing errors of the precipitation: Use 6-h accumulated amounts. 520 

� Deficient precipitation parameterization: Do not assimilate observations where the 521 

model is deficient. Appropriate quality control criteria (e.g., the climatological 522 

correlation scores between the model precipitation and observational precipitation) can 523 

be considered to keep only the precipitation observations that the model can effectively 524 

use. 525 

� High-resolution observations contain large random errors: Perform spatial and/or 526 

temporal averages to reduce the random errors; upscale the observations to large-scale 527 

grids. 528 

This guidance on the statistical approaches to precipitation assimilation were implemented 529 

and found to significantly improve the T62 5-day forecasts, shown in LMK2015b. 530 
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Figures 

 

Figure 1:  (a) The data coverage rate (%) and (b) the mean daily precipitation (mm) of the 14-
year (1998-2011) TRMM Multi-satellite Precipitation Analysis. Note that the coverage in (a) 
is greater than 95% in most areas. 
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Figure 2:  The probability density function and cumulative distribution function of the original 
precipitation and the transformed precipitation based on the 10-year model (red color) and 
observation (green color) climatologies. (a)–(d) A grid point in extratropics (76.9°W, 
39.0°N); (e)–(h) A grid point in tropics (120.0°E, 1.0°S); (i)–(l) A grid point in a marine 
stratocumulus region west of South America (84.3°W, 20.0°S). All plots correspond to the 
11–20 January period. The procedure of the Gaussian transformation is from (a) to (c), to 
(d), and to (b) as indicated by the arrows. The open circles correspond to the zero 
precipitation probability and the solid circles correspond to the half value (median) of the 
zero precipitation probability.  
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Figure 3:  A schematic of the preparation of precipitation samples from the TMPA observation 
dataset and the GFS model forecasts. For precipitation observations, a 10-year series of the 
3-hourly TMPA data is collected (top); for model background precipitation, equivalent 10-
year data are formed from a series of 9-hour GFS model forecasts every 6 hours initialized 
from the 10-year CFSR reanalysis. In each forecast cycle, the forecast is conducted with the 
desired model configurtion and resolutions (T62 and T126 in this study), and only the 3 to 9 
hour forecasts are used. 
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Figure 4:  Comparison of TMPA and GFS precipitation amounts (mm) for different levels of the 
precipitation CDF. (a) (b) 30%, (c) (d) 60%, and (e) (f) 90% cumulative distribution levels 
during the 11–20 January period. (a) (c) (e) are TMPA data, and (b) (d) (f) are T62 GFS 
model forecasts. 
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Figure 5:  The maps of (all-season) zero precipitation probability (%) in (a) the TMPA data and 
(b) the T62 GFS model forecasts.  
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Figure 6:  Joint probability distributions of the 6-hour accumulated precipitation with different 
transformation methods between the T62 GFS model background and the TMPA data 
upscaled to the same T62 grids. (a) No transformation (mm), (b) an exact logarithm 
transformation [α = 0 in Equation (1)], (c) a “modified” logarithm transformation (α = 0.6 
mm) is applied to the precipitation variables. Only positive precipitation is shown.  
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Figure 7:  As Figure 6b, but for the logarithm-transformed (a) instantaneous precipitation rate 
[mm (6h)-1 before the transformation] at the T62 resolution and (b) 6-hour accumulated 
precipitation (mm before the transformation) at the T126 resolution in both the GFS model 
background and the TMPA data.  
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Figure 8:  The joint probability distribution of (a)–(c) the logarithm-transformed (α = 0) and 
(d)-(f) the Gaussian-transformed 6-hour accumulated precipitation between the T62 GFS 
model background and the TMPA data upscaled to the same T62 grids. (a) (d) Global 
results; (b) (e) only the precipitation over the land; (c) (f) only the precipitation over the 
ocean. Only positive precipitation is shown.  
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Figure 9:  As Figure 8, but for (a) (d) the Northern Hemisphere extratropics (20–50°N), (b) (e) 
the tropical regions (20°N–20°S), and (c) (f) the Southern Hemisphere extratropics (20–
50°S). 
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Figure 10:  The maps of correlation between precipitation in the GFS model background and in 
the TMPA observations during the periods of (a) 11–20 January, (b) 11–20 April, (c) 11–20 July, 
and (d) 11–20 October. The blue contours indicate correlations = 0.35, which is the threshold 
used for the precipitation assimilation in LMK2015b. 


